MS-PS1 Matter and its Interactions

MS-PS1 Matter and its Interactions

MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures.  [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.]

Unit(s)

Why do the blimps used in major parades not explode like the Hindenburg blimp did in 1937?

Why does hot water freeze faster than cold water?

Brinciles

Task(s)

Assessment(s)

Brinicles Assessment

MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.  [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]

Unit(s)

Why does hot water freeze faster than cold water?

Task(s)

Assessment(s)

MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]

Unit(s)

Task(s)

Assessment(s)

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.  [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

Unit(s)

Why does hot water freeze faster than cold water?

Brinicles

A Candlestick in Water

Task(s)

Assessment(s)

Water Defying Gravity

Brinicles Assessment

MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. [Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.] [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.]

Unit(s)

Task(s)

Assessment(s)

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]

Unit(s)

Task(s)

Assessment(s)